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A theory of anisotropic fluids 

By GEORGE L. HAND 
Department of Mechanics, The Johns Hopkins Universityt 

(Received 25 September 1961) 

A theory is proposed in which the stress tensor is a function of the components 
of the rate of deformation tensor and a symmetric tensor describing the micro- 
scopic structure of a fluid. The expression for the stress tensor can be written in 
closed form using results from the Hamilton-Cayley theorem. This theory is 
shown to contain Prager’s theory of dumbbell suspensions as a special case. By 
limiting the type of terms in the constitutive equations, various stress com- 
ponents can be evaluated for simple shear. These exhibit non-Newtonian 
behaviour typical of certain higher polymer solutions. 

Some of the results of the anisotropic fluid theory are compared with experi- 
mental measurements of normal stress and apparent viscosity. Certain high 
polymers in solution show good agreement between theory and experiment, a t  
least for low enough values of the rate of shear. 

1. Introduction 
Several fluid mechanical theories have been formulated which take into account 

the fluid’s microscopic structure. Jeffery (1922), for example, calculated the 
fluid motion in the vicinity of a suspended ellipsoid and used the results 
t o  find the increase in viscosity due to the presence of the ellipsoidal particle 
in an otherwise Newtonian fluid. Prager (1957) considered a suspension of 
non-interacting dumbbell particles and found a constitutive equation for 
stress and equations determining the ‘preferred ’ direction adopted by the 
particles. 

We formulate here a theory of anisotropic fluids which is rather general in 
interpretation. We shall introduce a symmetric tensor aij that will describe the 
microscopic structure of a fluid and find the most general expression for the stress 
tensor as a function or the components of aii and rate of deformation d,. We shall 
consider the fluid so represented as being incompressible, and its properties 
independent of temperature. With these simplifications it will not be necessary 
to consider energy conservation explicitly, and the continuity equation reduces 

It will be shown that Prager’s (1957) theory is contained in this theory of 
anisotropic fluids, at  least for a special case. In  later papers the author will show 
that Jeffery’s (1922) theory and Ericksen’s (1959,1960) theory are also contained 
in this theory. The problem of simple shear will be considered in particular since 

7 Now with the Air Force Cambridge Research Laboratories, Geophysics Research 
Directorate. 

to dii = 0. 
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it  is the most tractable. In  the last section, comparisons will be made with the 
results of some experimental measurements. 

We use Cartesian tensor and matrix notation throughout the paper. The 
Einstein summation convention is observed. 

2. Formulation of the theory 
In  this section we formulate the theory of anisotropic fluids. We introduce a 

symmetric tensor uij general in interpretation which describes the microscopic 
structure of a fluid. We postulate that the components of the stress tensor tij 
are expressible as polynomials in the components of uij and the rate of deformation 
tensor dij which is defined as 

where the dot denotes material derivative and , is short for alax,. We further 
assume that the stress is symmetric. 

Rivlin (1955) has found the most general expression for a 3 x 3 symmetric 
matrix expressed as a polynomial in two other symmetric 3 x 3 matrices. He 
uses the Hamilton-Cayleytheorem and identities derivedfrom it to find t = t(a, d) 
in closed form. This general expression is 

dij = &(ki , j+kj ,J ,  ( 1 )  

t = Po I +PI a + P2d + P3 a2 + P4 d2 + P5(ad + da) 
+p6(a2d+da2)+P,(ad2+d2a) +Ps(a2d2+d2a2), (2) 

where I is the unit matrix. We consider that the isotropic pressure is contained 
in Po. The P’s are scalar polynomials in the elements of a and d and are invariant 
under orthogonal transformations; they are functions of a complete set of 
simultaneous invariants of a and d, for example 

(3) tr ad, tr  a2d, tr  adz, tr  a2d2, tr d32} 

t ra ,  tra2, tra3, t rd ,  trd2, 

where tr a means the trace of a. We consider that t represents stress, d the rate 
of deformation tensor, and a the general tensor describing the structure of the 
fluid. Since t, d, and a are all symmetric, we have a constitutive equation for 
stress. Equation (2) is rather complicated, but we can simplify it by stipulating 
that the components of stress are linear in the components of the rate of deforma- 
tion. This gives 

t = (go+ u1 t r  ad + v2 tr a2d) I + (r3+ (r4 tr ad + v5 tr a2d) a 

+ v6d + q,(ad + da) + cs(a2d + da2), (4) 

where the d s  are functions of the invariants of a only. We have used the relation 
for incompressible fluids: tr d = 0. 

We use this stress tensor in the standard form of the equations of motion, 

pXi = Fi + tij,j, (5) 

where p is density and l$ is the body force. This with the continuity equation 
provides us with four equations. We have ten unknowns, however, the ig, the 
aij, and the isotropic pressure. We must introduce six additional equations in 
order to have a complete set. 



Theory of anisotropic jluids 35 

aij = E,(akl, 2 p , g ) .  (6) 

We assume a constitutive equation of the form 

We are motivated in choosing this functional relationship by results obtained by 
other authors mentioned in the introduction who considered microscopic fluid 
structure. The reason for this form will become evident when a comparison is 
made in the next section. 

Noll (1955) has shown the correct form equation (6) must take in order to be 
invariant under time-dependent orthogonal transformations. He found that 
the velocity gradients must be replaced by the rate-of-deformation tensor 
di, and a ,  must be replaced by Bij  defined by 

where the vorticity is 

Using the results of Rivlin and the replacement theorem of Noll, we find the most 
general expression for ad, is 

(7) 

(8) 

A 

aij = aij - W i k a k j  f a i k W k j ,  

W i j  = + ( k i , j - k . ,  3 %  .). 

a = o a  - a o  + a,I + ala + a2d + a3a2 + a,d2 + &,(ad + da) 

+a,(a2d+da2) +a,(ad2+d2a)+a,(a2d2+d2a2), (9) 

where the a’s are functions of the invariants listed in expression (3). Equations 
(5), (9), and the continuity equation together with (2) provide the ten equations 
to determine aij, ki, and the isotropic pressure. We now have a complete set of 
equations to describe the mechanics of an anisotropic fluid. 

3. Comparison with Prager’s theory 
Prager obtains a constitutive equation for stress for a suspension of rigid 

dumbbells in a fluid. He restricts the theory to a suspension so dilute that there 
is no hydrodynamic interaction between dumbbells or between the two ends of 
the same dumbbell. Prager introduces the angular distribution function W for 
the orientation of the dumbbells in the flow field, where W satisfies the rotational 
diffusion equation 

- w, a2w D,- - 
apk 

the conditions that W is periodic in spherical co-ordinates and 

fs v d s  = 1, iYas = 0. (11)  f * 
Here D, is the rotational diffusion coefficient and s represents the surface of a 
unit sphere centred on the centre of the dumbbell. He lets pi be a unit vector 
which lies along the radial direction of the dumbbell. 

Prager considers the velocity of the end of the dumbbell relative to co-ordinate 
axes centred on the centre of the dumbbell. This can be represented by ,jiL 
where L is the dumbbell half-length. Since lpil = 1, we note that pipi = 1 and 
pi,di = 0. The velocity piL equals the fluid velocity in the neighbourhood of the 

3-2 
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end of the dumbbell, minus the radial component of the fluid velocity, plus the 
diffusional velocity of the dumbbell. For this special case Prager does not con- 
sider translation of the dumbbell relative to the fluid. 

The fluid velocity for homogeneous flow is given by 

2 .  a = 2 .  2.3 .x. 3 = (d.. a3 + W i i ) X j .  (12) 

The radial velocity vri of the fluid is found by Prager to be 

vri = Ldklpkplpi, (13) 

and the diffusional velocity is found by Kuhn & Kuhn (1945) to be 

Thus the end of the unit vector lying along the dumbbell moves with a velocity 

D r a w  given by 

having noted that pi  L = xi. 

Pi = (aij + w i j )  Pi - dklPkPIPi - W 9 

Now if we let aij have the form 

aii = Cj p i p i w a s ,  
s 

we can find an expression for ciij to compare with equation (9). Taking the total 
derivative of equation (16) and substituting from (10) and (15) we have 

We have assumed homogeneous fluid flow, so the components of dii and wii are 
constants on the surface of the unit sphere. Thus 

Now we note that 

F r 2 d V  = -  Pds, 
5 s  'P (19) 

if F is not a function of radius. Using the divergence theorem and the results of 
(19), we can simplify (17). After suitable algebra, we have 
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Using these results: equation (1 7 )  becomes 

dij = (dik + uik) akj + aik(dkj - okj) + 4D,sij - 12Draij - 2 4 ,  $ pkpzpipj W ds. (21) 

This is almost in the form of equation (9) except for the last term. We need to 
know the solution of (10) for W in order to reduce this term from fourth order 
in p to terms of second order in p. Since this is not available, we resort to an 
approximation. 

As a first-order approximation we assume that the integral in equation (21) 
can be expressed as a quadratic polynomial in aij. We only require that the 
conditions 

be satisfied and that the expression for the integral be completely symmetric. 
This gives 

S 

aii = 1, d. .  2% = 0 (22) 

n 

- &[S.jj Ski + Sikh'ji + Sjk]. (23) 

Here we note that the coefficients of the quadratic terms must be zero. Using 
(23 )  in (21) and noting that tr d = 0, we have 

U i j  = W i k  Ukj  - Uik 6Jkj + 6ij( 4 0 ,  - 5 tr ad) 

- 120, aij + +(aik d, + di, akj )  + Adij. (24) 

We compare this with equation (9) and find that 

(25) i 
a. = 4D,-+trad, a1 = - 12D,, 

a2 =A, a5 = +, 
a3 = a4 = as = a7 = as = 0. 

In  order to find the constitutive equation for stress, Prager assumes there is 
a frictional force F acting on the ends of the dumbbell which is proportional to 
the difference between the fluid velocity at the dumbbell end and the dumbbell 
velocity, i.e. 

I$ = g(si - p&), 
where 5 is a friction factor. He assumes that this force adds a contribution to the 
stress tensor normally used for an incompressible Newtonian fluid with viscosity 
vo such that the stress is 

where p is pressure, CT is a scalar depending on the friction factor Q the dumbbell 
concentration, and the dumbbell size, and s is the surface of a unit sphere. Using 
(26), (12) and (15) the expression for stress is 



35 George L. Hand 

having evaluated terms as above. If we evaluate the integral in (28) as was done 
above in the expression for &<,, we can find a more simple constitutive equation 
for the stress, 

fl 
-p-vD,+-trad 7 

+ ( 2 ~ ~ -  +) d, ++O-(aikdkj +&akj). (29) 

Comparing this with equation (2) gives 

(30) i Po = -p - vD, ++v tr  ad, p1 = ~cTD,,  

p2 = 27, - &V, p5 = Sfl, 
p3 = p4 = p6 = p7 = pB = 0. 

So we see that Prager's theory is a special case of the theory proposed in 5 2 at 
least for the simplification introduced in equation (23). 

4. Simple shear 
In  this section we consider the fluid motion given by 2l = Kxz,  k2 = g3 = 0, 

which is referred to as simple shear. We let I< be a constant. The rate of deforma- 
tion dij  and the vorticity oij reduce to 

and all other components are zero. We will simplify the expressions (2) and (9) 
and examine the microscopic motion and the resulting stress components. 

We consider that the aij are the coefficients of the quadratic form that describes 
the ellipsoidal shape of a particle suspended in a fluid. We assume that when the 
fluid is at rest, these particles tend to a spherical shape and for large times 
become ellipsoidal in shape when the fluid is sheared. We consider that inertial 
forces are negligible so that equation (9) describes the motion of the ellipsoid. 

I n  order to make our calculations tractable we assume that the expression for 
a, is linear in the components of d, and that the ellipsoidal particle never varies 
much from spherical shape. That is, we assume 

where all elements of a; are small compared to a. We substitute (32) into (9) and 
linearize, keeping products of the components of a;, and dij. The motivation for 
retaining these particular terms is due to a comparison with the results from 
Prager given in (24). We let a be a constant, and dropping the prime we have 

d12 = d2, = oI2 = = QK, (31) 

aij = asii + a l  , 132) 

= uikakj - aikokj + aij(y0+ y1 tr a + y2 tr  ad) 

f a i j  7 3  + d{j(y4 + 7 6  tr a) f ('ik f dik akj )  Y6, (33) 

where the 7's are constants and tr d = 0. The six components of (33) are, in detail, 

'11 = YO + (71 + 7 3 )  "11 + y l a 2 2  + y l a 3 3  + K(y6 + 7 2  + '1 a12, 

'22 = YO + Yla1l + (71 + 7 3 )  aZ2 + y l a 3 3  + K(y6 + 7 2  - a121 

'33 = YO + 71 all + 71 '22 + (71 + 7 3 )  a33 + Ky2a12,  

'12 = 'kK?/4 f iK(y6 + 7 5  - 
'13 = 'kK(y6 + '1 a23 + Y3a13, 

'23 = 'kK(?16 - '1 a13 + Y3a23' 

all f iK(y6 f 7 5  + '1 a22 + 'kK?/ba33 + Y3a12, 
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In order that the components of a approach stable values for large times, we
find from the last two expressions of (34) that the rate of shear must satisfy
K < - %?/h4 - 1% requiring that y2 < 0 and ) ys/ > 1. It is interesting to note
here from (24) and (25) that no steady-state solution exists for aU in Prager’s
theory, i.e. there is no statistical tendency for a suspension of dumbbells to
become oriented in simple shear. We arrive at this conclusion with reservation
because of the simplification introduced in equation (23).

We also note that if y,, and Y4 are zero in (34),  the particle remains a sphere for
large times until a critical rate of shear is reached. At this point the sphere begins
to stretch until the linearization utilized is no longer valid. The case of Y,, and Y4
being zero would describe a fluid which behaves as a Newtonian fluid for low
rates of shear and becomes non-Newtonian above a certain shear rate.

We can solve equation (34) for the components of aii for steady-state flow by
putting ciij  = 0. We assume that a stable solution exists, i.e. that we have not
exceeded the critical rate of shear and the conditions on the y’s hold. We find that

a \
11 -- d-l{ - YoY33  + P2Y3[Y3Y4(Y6  + Yz + 1)

+ YlY4CY6  f 3) - 2YdYs + Y5 + 1) - YOYdY6  + 1)lb
a22 -- W-Y,Y~+W2Y3[Y3Y4(Y,+Y2-l)

+YIYa(Y6-3)+2Yo(Ys+Y5-1)-YOY5(Y6-~)1I~  ,

- fw-Y,Y: + +K2Y3[Y3Y,Y2- 2YlY4Y6
(35)

a33 -

+Yo(Y6+Y5-1)(Y6+l)+Ycl(Y6+Y5+1)(Y5-1)1~~

a12 = WYWPYOY6 + 3Y,Y5  - Y3Y4 - 3YlY41,
al3 = a23 = 0, /

where

a = Y%Y3(Y3 + 3YI) - W2C(Y6  + Y5 + 1) (Y6 + Y2 - 1)

-f- (Ya + Y5 - 1) (Ys + 7'2 + 1) + (2Yr/Y2)  (Yi - st + Y2Y51&

Now if K = 0, we have a sphere of radius A = (-- (y3+ 3y,)/y$. We non-
dimensionalize the components of aij by multiplying by the radius squared to give

ad = ~+=~~Y~A~~Y~Y~(Y~+Y~+  u+Y~Y,(Y,+~) \

- 2Y,(Y, + Y5 + 1) - YOYEi(Y6  + l)l + %

a,,~2 = 1+ --w3A2rY3Y4(7+  +y2 - 1) + y1y4(ys  - 3)

+2YdY,+Y5-  I)--Y,Y5(Ys-  l)l+%

i

(36)

a3,A2  = 1+ ~2w4Y3A2[Y3Y4y2  - ~Y,Y,Y,

+Yo(Y6++5-1)(Ys+1)+Yo(Y6+Y5+1)(Y6-1)1+%

a12A2 = w~24a-1cw,Y6  + ~Y,Y,-  y3y4-  3~~~~1,
where

k = 3Y~{(Ys+Y5+1)(Y5+Y2-1)f(Ys+Y5-1)(Ys+Y2+1)

+ (2YJY3) cri - 6) + Y2Y5)’

We see that a,,, a22 and a33 remain small for large rates of shear if - A2y3/2k
times the respective square brackets remain close to unity.
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We consider now the orientation of the ellipsoid assuming that the components 
of uii remain small compared to A-2, the spherical radius at  K = 0. The eigen- 
values of uii are given by 

A, = Q(Ul1 + &{(all - a22)' ~ U ? Z } ' ,  

(37) A, = +(all + - H(ull - + 4a?#, 
A, = a,,. 

Using (35) we find the normalized eigenvectors to be 

t,, = (6, + 6, tr  a + 8, tr  ad) + 6 3 ~ 1 1 +  66a1&, 

t,, = (6, + 8, t r  a + 6, t r  ad) + 63u22 + 6,a12K, 
t,, = (8, + 6, tr a + 6, tr ad) + 6,u3,, 

t,, = 6 3 ~ 1 2  + +(a4 + S5 tr a) K + +66(a11 + a2,) K ,  

' 

t13 = 63u13 f +66u23K, 

where B = K/y ,  < 0, assuming K to be a positive number. The 2's are the unit 
vectors lying along the principal axes of the ellipsoid, and the x's are unit vectors 
lying along the co-ordinates axes. From (37) we note that A, 2 A, 2 A, or 
A, 2 A, 2 A,. We exclude the equality signs since these would require special 
values for the y's appearing in (35) .  If A, is the largest eigenvalue, we have an 
ellipsoid whose major axis is in the 2, direction and minor axis in the 2, direction. 
If A, is the smallest eigenvalue, we have an ellipsoid whose major axis is in the 
$, direction and minor axis in the 2, direction. For either case we see from (38) 
that the larger of the two principal axes of the ellipsoid in the (x,,x,)-plane 
points 45" counterclockwise from the x1 axis for zero rate of shear. This angle 
becomes smaller as the shear rate increases. For very large shear rates the ellipsoid 
aligns itself with the co-ordinate axes. 

Now we consider the stress given by equation ( 2 ) .  We linearize the stress with 
respect to the components of uij and d, as was done above withaij, againretaining 
the products of the components of uij and d,. The motivation for retaining these 
particular terms is again due to a comparison with the results from Prager given 
in equation (29). The stress takes the simplified form 

tii = (60+6,tra+6,trad)6ii+6,u,j+ (64+65tra)dii+6,(a,kdkj+dileu~j), (39) 

We see from (35) that, for steady state, t,, = t,, = 0 for all values of K as long 
as the ellipticity remains small. We are interested in various combinations of 
the stress components, namely the normal stress differences t,, - t,, and t,, - t,,, 
and the apparent viscosity t12/K. From (40) these are 

} (41) 
hl- tZZ  = 63(u11 - u22) ,  tll - t33 = 63(u11- + 66u12K, 

t,,/K = 6 3 ~ 1 2 / K  + +(64 -t- 6, tr a) + &(a11 + a,,). 
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Substituting from (35)  we have 

- t22 = 63?'3eK2/d, ti, - t33 = 4 7 3  eK2[(Ys 63 - 7 3  4jI/d, 
t , ,/K = ~ 6 4 + g { - 6 3 y ~ e - 3 6 ~ , y , y ~ - 2 6 6 y 0 y ~  

+ 4K273[65(2y3 7 4  7 6  + 3Y3Y4Y2 - 6Y0 + 'yo'$) 
+ 66(2Y3Y4Y6 + 2Y3 7 4 7 2  + 2Yl 7 4 7 6  - 4Y0 - 2Y0 7 5  %md9 

where = Y3Y4+ 3Y1Y4-2YoY6-370Y5 
and d is defined in (35 ) .  

We see that the normal stress differences are proportional to K2 for low values 
of K and ultimately approach limiting constants as K gets very large. The 
apparent viscosity has two different limiting values at low and high rates of 
shear. From the theory it is not possible to determine whether the apparent 
viscosity at high rates of shear is greater or lower than that at  low rates of shear. 
In the next section these results will be compared with some experimental 
measurements. 

5. Experimental comparisons 
Many investigators have measured the properties of non-Newtonian fluids, 

but few have measured normal stress and apparent viscosity over large ranges of 
rate of shear for any given material. Ideally, we would like measurements of 
the normal stress differences t , ,-t, ,  and t , ,-t3, and the apparent viscosity 
t,,/K for a given material at  a fixed temperature over a range of rate of shear 
from say K = 0 to K = 104sec-l. Also, measurements on more than one type of 
instrument would be of great benefit. The comparisons to be made in this paper 
are in the author's opinion amongst the better experimental results. Instruments 
commonly in use are the cone-and-plate and parallel-plate rheogoniometers. 
The most common material tested is polyisobutylene in solution which is 
available in a variety of molecular weights. We consider comparing the results 
of the anisotropic theory with experiments on high polymers such as poly- 
isobutylene, because it is believed that very long chain molecules in solution 
tend statistically to be spherical in shape when the fluid is at  rest and to elongate 
when the fluid is sheared. This is the model proposed in the last section. 

Many authors consider that Weissenberg's conclusion holds, i.e. that 
t,, - t3, = 0. Others believe that this quantity is small compared with the stress 
difference t,, - t,, but not zero. The behaviour of t,, - t,, is not well understood 
for even the most commonly tested materials. If we assume that Weissenberg's 
conclusion holds, we see from equation (42) that 

There is no reason why equation (43 )  should or should not hold, since the theory 
of anisotropic fluids does not specify values for the 6's. We will only consider 
the normal stress difference t,, - t,, in the following paragraphs since so little is 
known about the other normal stress differences. 

' 6  = 633(Y6- ') /Y3* (43) 

Now looking at  equation (42), we see that these equations have the form 

K2 ti2 - m+nK2 t, ,- t , ,  = ~ - 
p + q K 2 '  K - p + q K 2  (44)  



42 George L. Hand 

Here m, n, p ,  and q are constants and K is the rate of shear. We see that the 
normal stress difference approaches KZ/p as K + 0 and l /q  as K gets sufficiently 
large. The apparent viscosity approaches m/p as K + 0 and n/q as K gets suffi- 
ciently large, two constants which are unequal in general. We will attempt to fit 
experimental curves by evaluating the constants in equations (44). 

Greensmith & Rivlin (1953) performed very precise experiments using a 
parallel-plate rheogoniometer. Figure 1 represents data found for polyisobutylene 
dissolved in Tetralin at  25 "C. Curve A is for a 34.8 % by weight solution of B 15 
and curve B is for a 6 % solution of B 120 polyisobutylene. Curve A is a plot of 
the formula - -  K2 

h,-h = 
2213 + 8.96 x K2 

and curve B is a plot of the formula 

2 

h 

v 

I& 

' 1  IZ 

2 4 6 8 10 

0 2  

3.1 

0 
) 

(45) 

K (sec-l) 

(from Greensmith & Rivlin 1953). 
FIGURE 1. Normal stress vs rate of shear for two polyisobutylene solutions 

Here E, is the average height of rise of fluid at the apparatus centre-line and 
the average height of rise of fluid a t  other points. Generally E,  - E = (t,,, - t,,)/pg, 
where p is fluid density, y the gravitational constant, and t,,, = t,,, = t,,,. The 
theoretical curves agree with the data for the low rates of shear of the experiment. 

Markovitz & Williamson (1957) used a cone-and-plate instrument with poly- 
isobutylene. Figure 2 represents values for Vistanex B-100 polyisobutylene 
dissolved in Decalin. A variety of concentrations and temperatures were used, 
but the data were reduced to standard conditions using the formulas 

where 7 is the apparent viscosity at zero shear rate, To = 298 OK, T is the tem- 
perature, F(c)  = c/co for c < c,, P(c) = (c/co)a for c 3 c,, c is the weight concentra- 
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tion, c,, = 0.08, v = Q(tll - t,,), and the subscript r stands for reduced. In 
curve A is given by the formula 

K2, v = -  ' 1513 + 3.03 x lOP3K: 
and curve B by the formula 

figure 2 

(48) 

A 

Kr 

FIGURE 2. The hatched lines represent the spread of data of reduced normal stress 218 
reduced rate of shear for a large variety of polyisobutylene solutions (from Markovitz 
& Williamson 1957). 

We see that the theoretical curves are close to the experimental curves for K 
sufficiently small, but the curves deviate widely a t  high rates of shear. 

Kotaka, Kurata & Tamura (1957) used a parallel-plate instrument to measure 
the normal stress difference and the apparent viscosity of polystyrene dissolved 
in Decalin. Their experiments were performed at 25 "C. In figure 3 we have the 
results of the normal stress measurements. Curve A is for a 19.8 % solution by 
weight and is given by the formula 

K2 

Data for a 24.5 % solution are represented by the theoretical curve B given by 

K2 t,,-t - 
22 - 0.445 + 3.71 x lOP4K2' 

or by curve C given by 
K2 

t11-t22 = 0.457 + 1.08 x 10-4K2' 

Data for a 30.8 % solution are represented by the theoretical curve D given by 

K2 t,,-t - 
22 - 3.73 x io-2+ 1-98 x 1 0 - 4 ~ 2 '  

(53) 
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We again find that we can approximate the experimental curves fairly well for 
sufficiently low values of the rate of shear. 

Kotaka et al. measured the apparent viscosity for the same solutions men- 
tioned in the above paragraph. In  figure 4, data for a 19-8 % solution are given by 

66.4 + 3.06 x 10-3K2 tlz- 
K - 4-65 + 2.74 x 10-4K2' 

0 

(54) 

lo J 
10 102 

K (sec-l) 

(from Kotaka eb al. 1957). 
FIGURE 3. Normal stress vs rate of shear for three polystyrene solutions 

In figure 5, curve A is the theoretical curve for a 24.5 % solution and is given by 

t,, 27.0 + 1.61 x 10-2K2 
- 
- 0-445 + 3.71 x 10-T2 '  

Curve B is the theoretical curve for a 30.8 % solution and is given by 

tl2- 12.64 + 3.38 x 10-2K2 - 
K 3.73 x io-2+ 1-98 x 1 0 - 4 ~ 2 '  

(55) 

From the above comparisons with experiment we see that, at least for SUE- 
ciently low rates of shear, we can approximate data fairly well by the formulas 
given in (44) for certain materials. The values of the constants in (44) depend on 
the material and on concentration. A t  high rates of shear the comparison is not 
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close, but it must be noted that the experimental results at high rates of shear 
me in doubt due to heating, secondary flow, and other non-ideal effects in the 
apparatus. 

It is generally accepted that the apparent viscosity has two limiting values 
at high and low rates of shear for certain materials as predicted in (44). 

K (sec-1) 

FIGURE 4. Apparent viscosity 21.3 rate of shear for a 19.8 yo soIution of 
polystyrene (from Kotaka et al. 1957). 

K (sec-I) 

FIGURE 5. Apparent viscosity vs rate of shear for 24.5 and 30.8 yo solutions 
of polystyrene (from Kotaka et al. 1957). 
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In  comparing the results found in equations (35) and (38) for shape and 
orientation of suspended particles, there is little experimental information other 
than of a qualitative nature. Visual observation of immiscible drops suspended 
in a fluid indicates th&t the drops elongate in simple shear. The higher the shear 
rate the greater is the elongation of the drop. The drops tend to line up with their 
major axis a t  45" to the flow direction at  low rates of shear, and this angle 
decreases with increasing rates of shear. The theory agrees with these obser- 
vations. 
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